Constrained density estimation

نویسندگان

  • Peter Laurence
  • Ricardo J. Pignol
  • Esteban G. Tabak
چکیده

A methodology is proposed for non-parametric density estimation, constrained by the known expected values of one or more functions. In particular, prescribing the first moment –the mean of the distribution– is a requirement for the density estimation associated to martingales. The problem is addressed through the introduction of a family of maps that transform the unknown density into an isotropic Gaussian, while adjusting the prescribed moments of the estimated density. 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Nonlinear Estimation of Road Friction Coefficient and Wheel Slip for Control of Anti-Lock Braking System

In designing the anti-lock braking system (ABS), some states and parameters of vehicle system such as road friction of coefficient and wheel slip should be estimated due to lack of cost effective and reliable sensors for direct measurement. Because of nonlinear characteristics of vehicle dynamics and tire forces, development of a nonlinear estimation algorithm is necessary. However, considerati...

متن کامل

A geometric framework for density estimation and conditional density estimation

We introduce a geometrically intuitive procedure to obtain an estimator for a probability density function in the absence or presence of predictors. The estimation procedure is based on starting with an initial estimate of the density shape and then transforming it via a warping function to obtain the final estimate. The idea is to design the initial estimate to be computationally fast, albeit ...

متن کامل

Shape Constrained Density Estimation via Penalized Rényi Divergence

Abstract. Shape constraints play an increasingly prominent role in nonparametric function estimation. While considerable recent attention has been focused on log concavity as a regularizing device in nonparametric density estimation, weaker forms of concavity constraints encompassing larger classes of densities have received less attention but offer some additional flexibility. Heavier tail beh...

متن کامل

A Sparse Kernel Density Estimation Algorithm Using Forward Constrained Regression

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the...

متن کامل

A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China

Research on spatial cluster detection of traffic crash (TC) at the city level plays an essential role in safety improvement and urban development. This study aimed to detect spatial cluster pattern and identify riskier road segments (RRSs) of TC constrained by network with a two-step integrated method, called NKDE-GLINCS combining density estimation and spatial autocorrelation. The first step i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012